481 research outputs found

    Tunneling in Fractional Quantum Hall line junctions

    Get PDF
    We study the tunneling current between two counterpropagating edge modes described by chiral Luttinger liquids when the tunneling takes place along an extended region. We compute this current perturbatively by using a tunnel Hamiltonian. Our results apply to the case of a pair of different two-dimensional electron gases in the fractional quantum Hall regime separated by a barrier, e. g. electron tunneling. We also discuss the case of strong interactions between the edges, leading to nonuniversal exponents even in the case of integer quantum Hall edges. In addition to the expected nonlinearities due to the Luttinger properties of the edges, there are additional interference patterns due to the finite length of the barrier.Comment: 7 pages, RevTex, 12 figs, submitted to Phys Rev

    Influence of disorder on the perpendicular magnetoresistance of magnetic multilayers

    Full text link
    The effect of disorder on the perpendicular magnetoresistance of magnetic multilayers is investigated theoretically. Various kinds of disorder are considered: (i) interface substitutional disorder and (ii) bulk disorder in the various layers and in the leads. The calculations are based upon the non-equilibrium Green's function formalism, together with the recursion method for calculating the real-space Green's function.Comment: RevTeX, 3 pages, 3 eps figures included; minor changes in v

    Double Resonance Mechanism of Ferromagnetism and Magnetotransport in (Ga-Mn)As

    Get PDF
    We calculate the electronic states of the Mn-doped semiconductors and show that resonant states are formed at the top of the down spin valence band due to magnetic impurities and that they give rise to a strong and long-ranged ferromagnetic coupling between Mn moments. We propose that the coupling of the resonant states, in addition to the intra-atomic exchange interaction between the resonant and nonbonding states, is the origin of the ferromagnetism of (Ga-Mn)As. The mechanism is thus called "double resonance." The resonant states bring about the spin-dependent resistivity to produce magnetoresistive properties in (Ga-Mn)As and their junctions. PACS numbers: 75.50.Pp, 75.30.Hx Diluted magnetic semiconductors (DMSC's) of III-V elements, (In-Mn)As [1] and (Ga-Mn)As The electronic state of the Mn impurity in (Ga-Mn)As in the dilute limit has been shown to be 3d 5 1 hole with antiferromagnetic p-d coupling More detailed study is thus highly desirable to clarify the mechanism for the ferromagnetic coupling between Mn moments in these DMSC's. In this Letter, we show, by calculating the electronic states of Mn-doped SC's, that there appears a sharp resonant state at the top of the down spin valence band (VB), and demonstrate, by using a simpler model, that the resonant states give rise to a strong and long-range ferromagnetic coupling between Mn moments. The mechanism for the ferromagnetism is thus called double resonance. We further study the relevance of the electronic state to the spin-dependent transport properties of (Ga-Mn)As and to the p-d exchange coupling estimated in the RTD experiment. We first perform realistic LCAO (tight-binding) calculations for a transition metal impurity in the SC, the band parameters of which are taken from the textbooks The density of states (DOS) of SC atoms and local DOS of the impurity are calculated by using the recursion metho

    Magnetic Properties of a Quantum Ferrimagnet: NiCu(pba)(D_2O)_3 . 2D_2O

    Full text link
    We report the results of magnetic measurements on a powder sample of NiCu(pba)(D_2O)_3 \cdot 2D_2O(pba=1,3propylenebis(oxamato))whichisoneoftheprototypicalexamplesofan (pba=1,3-propylenebis(oxamato)) which is one of the prototypical examples of an S=1/2and1ferrimagneticchain.Susceptibility(=1/2 and 1 ferrimagnetic chain. Susceptibility(\chi)showsamonotonousincreasewithdecreasingtemperature(T)andreachesamaximumatabout7K.Intheplotof) shows a monotonous increase with decreasing temperature (T) and reaches a maximum at about 7 K. In the plot of \chi Tversus versus T,theexperimentaldataexhibitabroadminimumandarefittothe, the experimental data exhibit a broad minimum and are fit to the \chi TcurvecalculatedfortheferrimagneticHeisenbergchaincomposedofS=1/2and1.Fromthisfit,wehaveevaluatedthenearestneighborexchangeconstant curve calculated for the ferrimagnetic Heisenberg chain composed of S=1/2 and 1. From this fit, we have evaluated the nearest-neighbor exchange constant J/k_B=121 K,thegvaluesofNi, the g-values of Ni^{2+}andCu and Cu^{2+},, g_{Ni}=2.22and=2.22 and g_{Cu}=2.09,respectively.Appliedexternalfielddependenceof=2.09, respectively. Applied external field dependence of \chi T$ at low temperatures is reproduced fairly well by the calculation for the same ferrimagnetic model.Comment: 7pages, 4 postscript figures, usues REVTEX. appear in J. Phys. Soc. Jpn vol 67 No.7 (1998

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    CD40 Ligand Expression is Defective in a Subset of Patients with Common Variable Immunodeficiency.

    Get PDF
    Common variable immunodeficiency (CVI) is characterized by hypogammaglobulinemia and recurrent bacterial infections due to failure of CVI B cells to differentiate in vivo into immunoglobulin-secreting plasma cells. We hypothesized that T-cell dysfunction resulting in abnormal contact-mediated B-cell activation may play a prominent role in the failure of CVI B cells to produce specific antibody. We have previously shown that B-cell proliferation and IgE production after stimulation with anti-CD40 and interleukin (IL) 4 were normal in 22 CVI patients evaluated, indicating that CVI B cells respond to signals delivered via CD40. Here we report that CD40 ligand (gp39) mRNA expression by activated lymphocytes from CVI patients (n = 31) as a group was significantly depressed (P \u3c 0.0001) compared with normal controls (n = 32). gp39 mRNA expression by activated lymphocytes from 13 CVI patients fell below the normal control range. T-cell surface expression of functional gp39 protein was correspondingly low in those patients with gp39 mRNA levels below normal control range and normal in patients with gp39 mRNA levels within normal control range. In CVI patients as a group, gp39 mRNA levels correlated with IL-2 mRNA levels (P \u3c 0.002, r = 0.6) and production (P \u3c 0.001, r = 0.7) but not with gene expression or production of other lymphokines evaluated, suggesting an as-yet-undetermined association between gp39 and IL-2 gene regulation. Of the 13 patients whose activated T cells exhibited gp39 mRNA expression below the normal control range, 2 had normal T-cell-derived lymphokine production, whereas the remaining 11 exhibited broader T-cell dysfunction, resulting in IL-2 deficiency, and in some patients deficient production of other lymphokines as well, reflecting a heterogeneity in the underlying mechanisms leading to depressed gp39 expression in these patients. The observation that both gene and surface expression of gp39 by activated T cells is depressed in a subgroup of CVI patients suggests that inefficient signaling via CD40 may be responsible, in part, for failure of B-cell differentiation in these patients

    Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires

    Full text link
    We present numerical calculations of the ballistic spin-transport properties of quasi-one-dimensional wires in the presence of the spin-orbit (Rashba) interaction. A tight-binding analog of the Rashba Hamiltonian which models the Rashba effect is used. By varying the robustness of the Rashba coupling and the width of the wire, weak and strong coupling regimes are identified. Perfect electron spin-modulation is found for the former regime, regardless of the incident Fermi energy and mode number. In the latter however, the spin-conductance has a strong energy dependence due to a nontrivial subband intermixing induced by the strong Rashba coupling. This would imply a strong suppression of the spin-modulation at higher temperatures and source-drain voltages. The results may be of relevance for the implementation of quasi-one-dimensional spin transistor devices.Comment: 19 pages (incl. 9 figures). To be published in PR

    RAPID: Resource of Asian Primary Immunodeficiency Diseases

    Get PDF
    Availability of a freely accessible, dynamic and integrated database for primary immunodeficiency diseases (PID) is important both for researchers as well as clinicians. To build a PID informational platform and also as a part of action to initiate a network of PID research in Asia, we have constructed a web-based compendium of molecular alterations in PID, named Resource of Asian Primary Immunodeficiency Diseases (RAPID), which is available as a worldwide web resource at http://rapid.rcai.riken.jp/. It hosts information on sequence variations and expression at the mRNA and protein levels of all genes reported to be involved in PID patients. The main objective of this database is to provide detailed information pertaining to genes and proteins involved in primary immunodeficiency diseases along with other relevant information about protein–protein interactions, mouse studies and microarray gene-expression profiles in various organs and cells of the immune system. RAPID also hosts a tool, mutation viewer, to predict deleterious and novel mutations and also to obtain mutation-based 3D structures for PID genes. Thus, information contained in this database should help physicians and other biomedical investigators to further investigate the role of these molecules in PID

    Chiral Symmetry Breaking in Quenched Massive Strong-Coupling QED4_4

    Get PDF
    We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched QED4_4. Results are compared for three different fermion-photon proper vertex {\it Ans\"{a}tze\/}: bare γμ\gamma^\mu, minimal Ball-Chiu, and Curtis-Pennington. The procedure is straightforward to implement and numerically stable. This is the first study in which this technique is used and it should prove useful in future DSE studies, whenever renormalization is required in numerical work.Comment: REVTEX 3.0, 15 pages plus 7 uuencoded PostScript figure
    corecore